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SUMMARY

Z-TEM data are airborne EM data which record the vertical
magnetic field that results from natural sources. Processing
the data yields transfer functions which relate the vertical mag-
netic field to horizontal fields at a reference station. The trans-
fer functions depend upon frequency and provide information
about the 3D conductivity structure of the Earth. In this paper
we show how these transfer functions can be modelled. This
is the crucial step towards any interpretation or inversion. The
inversion of Z-TEM data is computationally similar to inver-
sion of MT data. This ability will enhance exploration efforts
to find large scale structures buried at depth.

INTRODUCTION

Magnetotellurics (MT) is a passive electromagnetic exploration
technique that is sensitive to deep conductivity structures. Be-
cause of the ability to image a large range of depths, MT plays
a significant role in both crustal studies as well as mining and
hydrocarbon exploration. As the number of remaining near
surface exploration targets decreases, MT techniques play an
increasing role in exploration. This trend, combined with in-
creased computational abilities, has contributed to significant
work in three-dimensional MT modelling. One practical lim-
itation of the traditional technique is the time consuming and
costly nature of the survey. This is because multiple expensive
stations must be installed to measure all of the field compo-
nents at the surface of the earth.

A technique that shows promise for discovering larger scale
structures is the Z-TEM system. Currently Z-TEM data is be-
ing collected by both industry and government. This tech-
nique is very similar to the MT technique however in a Z-
TEM survey only the magnetic fields are recorded. The verti-
cal fields are recorded in an airborne method along the survey
lines while the horizontal fields are recorded at one grounded
base station. The data to be interpreted are the transfer func-
tions that relate the vertical component of the magnetic field to
the horizontal field at the base station. In order to interpret data
we need to forward model the responses and ultimately invert
them. In this paper we present a method to compute Z-TEM
transfer functions as well as a method to invert them.

FORWARD MODELLING

Our forward modelling procedure is based upon the MT works
of Farquharson et al. (2002), where the solution of Maxwell’s
equations is that of Haber et al. (2000a). The essential details
are summarized below.

The electric field is decomposed into vector and scalar poten-

tials

E = A+∇φ , (1)

and the Coloub gauge condition

∇ ·A = 0, (2)

is imposed for uniqueness. Maxwell’s equations combined
with our decomposition gives

∇2A+ iωµ0σ(A+∇φ) = 0, (3)

where ω is the angular frequency, µ0 is the magnetic perme-
ability of free space, σ = σ(r) is the electrical conductivity of
our Earth model and i =

√−1. We have also used the quasi-
static assumption and assumed a e−iωt time-dependence. Cur-
rent densities are given according to

J = σ(A+∇φ), (4)

and

∇ · J = 0. (5)

For our modelling we discretize the earth into rectangular cells
and, after applying a finite volume technique to equations 3-5
Haber et al. (2000a), we obtain a system of equations to be
solved.

(
L+ iωµ0S iωµ0SG

DS DSG

)(
A
φ

)
= 0. (6)

A now represents the vector of components of the vector po-
tential on the mesh, and φ represents the vector of scalar po-
tentials. Furthermore, L represents the discretization of the
Laplacian operator, S represents the averaged cell conductiv-
ities, and G and D are the discretizations of the gradient and
divergence operators. For each source polarization (one for an
x-directed H-field at the top of the mesh, and the other for a
y-directed H-field) the resulting E and H fields are computed.

MAGNETIC TRANSFER FUNCTIONS

Transfer functions relate the vertical magnetic fields computed
above the earth to the horizontal magnetic field at some fixed
reference station. This relation is given by

Hz(r) = Tzx(r,r0)Hx(r0)+Tzy(r,r0)Hy(r0), (7)
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where r is the location for the vertical field, and r0 is the loca-
tion of the ground based reference station.

Figure 1: Locations of the data required for the computation
of the magnetic transfer functions. The vertical component
of the fields are collected at a height above the surface of the
earth. The position r, is the location of a single vertical field
measurement. The horizontal fields are obtained at one fixed
reference station located at r0, on the earth. This reference
station should be located just outside of the region of interest.

Our source functions for the natural fields are random and as
with MT, we need two polarizations. The transfer functions
for each polarization are given by

H(1)
z = TzxH(1)

x +TzyH(1)
y , (8)

H(2)
z = TzxH(2)

x +TzyH(2)
y , (9)

or

(
H(1)

z (r)
H(2)

z (r)

)
=

(
H(1)

x (r0) H(1)
y (r0)

H(2)
x (r0) H(2)

y (r0)

)(
Tzx
Tzy

)
,

(10)

where the superscripts (1) and (2) refer to the source field po-
larization in the x and y directions respectively. These two
relations can be combined to yield the equations that must be
solved for the transfer functions:

(
Tzx
Tzy

)
=

(
H(1)

x (r0) H(1)
y (r0)

H(2)
x (r0) H(2)

y (r0)

)−1(
H(1)

z (r)
H(2)

z (r)

)
.

(11)

EXAMPLE

Transfer function computation

We illustrate the computation of magnetic transfer functions
using a synthetic example that was chosen to emulate a por-
phyry deposit. The model has a central resistive core, an outer
region of high conductivity, and is buried in a background host.
The conductivity structure is shown in figure 2.

Figure 2: Conductivity model: a resistor surrounded by a con-
ductor, all buried in a 100Ωm background halfspace. Panel
(a) shows a plan view and panel (b) shows a vertical section
through the blocks. The bottom table summarizes the block
dimensions and resistivites.

The Earth was discretized into a mesh containing 68 x 68 x 70
cells in the x, y, and z-directions respectively. A single 20Hz
signal was used. The vertical magnetic fields were computed
at a fixed height of 20m over the surface to emulate the data
collected by an airborne survey. The data were computed at
100m intervals over a 2.3 km by 2.3 km region. The horizontal
field components were computed at a ground based reference
station at a location r0 of x = - 2600m, y = - 2600m.

Data visualization

The transfer functions are complex. They have real and imag-
inary parts that change with frequency. The transfer functions
for the synthetic example are displayed in figure 3. In these
simple circumstances the data display structure that is associ-
ated with the outer boundaries of the blocks. There is no vis-
ible depth information with the plot. We can get some further
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Figure 3: Real and imaginary components of the magnetic
transfer functions Tzx and Tzy.

idea about depth and boundaries through filtering techniques.
One such filtering scheme is that of Karous and Hjelt (1983)
in which linear filtering techniques of vertical magnetic fields
can be used to generate current pseudosections. We show that
these pseudosections can often aid to provide satisfactory in-
terpretations of simple models.

The current pseudosections obtained from linear filtering the
vertical magnetic fields from the previous synthetic example
are shown in Figure 4. The fields were computed for a x-
directed source H field. The plots were generated using the
Matlab code of Sundararajana et al. (2006). As one would ex-
pect along the profile y = 0m, the current flow is opposite in
the conductor and resistor regions. As we move to y = 2000m,
the central resistor response has diminished since we are now
at the edge of the conductor. Finally as we move well into
the halfspace we have very little current density throughout
the entire cross-section. These pseudosections help us define
the block boundaries at depth; however, this method is only an
approximation. Nonetheless, these pseudosections when com-
bined with the information gained from plotting the transfer
functions, can provide some interpretation for simple model
geometries.

INVERSION

Our inversion algorithm is that of Farquharson et al. (2002)
and is implemented by the minimization of the data-misfit and
model complexity. The solution is obtained by an iterative
Gauss-Newton procedure based on Haber et al. (2000b).

By minimizing the objective function

Φ = φd +βφm, (12)

we obtain our solution to the inverse problem. φd is the data-
misfit, φm is amount of structure in the model, and β is the
trade-off or regularization parameter. We use the sum of squares
as the measure of misfit

Figure 4: Pseudosection from linear filtering the vertical mag-
netic fields computed from a x-directed H source field. The
synthetic earth model was the resistor embedded in a conduc-
tor seen in figure 2. The pseudosection gives a relative current
density along three cross sections in the model. The block
boundaries have been superimposed on the plots to help aid
the interpretations. Panel (a) is a measure of relative current
density vs depth for the profile y = 0m. This profile intersects
the middle of the conductor and resistor as can be seen in the
miniature plan view model to the right of the pseudosection.
Panel (b) is a current cross section along the profile y = 2000m
which is along the edge of the conducting block. Panel (c) is
along the profile y = 4000m, well into the background halfs-
pace.

φd = ||Wd(dobs−dprd)||22, (13)

where dobs is the observation vector, Wd is a diagonal matrix
whose elements are the reciprocals of the measurement uncer-
tainties. The measure of model structure is

φm =
4∑

k=1

αk||Wk(m−mre f )||22, (14)

where W1 is a diagonal matrix and W2,W3 and W4 are first
order finite-difference matrices in the x, y and z directions,
and mre f is a reference model. For the minimization of the
objective function at the (n+1)th iteration, the Gauss-Newton
method requires the solution of

(JT WT
d WdJ+βWTW )δm =

−JT WT
d Wd(dobs−dn)−βWT W(mn−mre f ),(15)

where mn is the vector of model parameters from the previous
iteration, J = J(mn) is the Jacobian matrix of sensitivities, W
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is such that WT W =
∑

αkWT
k Wk, and δm is the perturba-

tion to be added to mn to give the new model.

At present our inversion algorithm is only implemented to in-
vert magnetotelluric impedances; however, with modifications
we will be able to invert magnetic transfer functions.

CONCLUSIONS

Z-TEM airborne data is currently being collected and provides
new potential for discovering larger scale structures. After pro-
cessing, the data are transfer functions that are a function of
frequency. We have shown how to simulate these forward re-
sponses on a simple synthetic example. The next step is to
invert them to recover a 3D conductivity model. The method-
ology has been established, and we are pursuing this goal.
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